
30 The Delphi Magazine Issue 29

Surviving Client/Server:
Indexing Freeform Text
by Steve Troxell

Suppose you had a medical data-
base containing a memo field

for patient symptoms. How would
you find all the cases admitted with
convulsions? Or suppose you had
a legal database containing deposi-
tions from dozens of witnesses for
a certain case. How would you find
all the witnesses who saw Mr
Smith?

When our tables contain dis-
crete fields, it’s easy for us to index
those fields and select records
matching certain field values. But
in the case of freeform string fields
or memos, database systems gen-
erally do not provide a direct way
of finding specific text within the
field.

One approach is to mimic the
Windows help system and store a
set of keywords linked to the memo
containing those keywords. Then
we just search the keyword list to
find the corresponding memo
records. This task becomes a little
more complicated as we add capa-
bilities to do some limited Boolean
algebra with operators such as AND,
OR and NOT. We really begin to
scratch our heads when we con-
sider proximity matches like the
NEAR operator, which means “x and
y when they are within n words of
each other.” Finally, we must con-
sider how we are going to find a
phrase of any length within the text
without scanning each memo one
by one for each query. Oh, and you
have to do all this in SQL.

We’ll see how to do all this, and
the techniques are not specifically
tied to indexing text. They can be
used with any master-detail rela-
tionship where we need to locate
master records containing a cer-
tain combination and/or sequence
of detail records.

Basic Keyword Indexing
For our first attempt at producing a
keyword index, we will consider a

“data table” containing a single
memo field to be indexed. We’ll use
the BIOLIFE table from the DBDEMOS
example database. This table con-
tains a freeform text field called
Notes. We will allow the user to
enter an expression such as you
might enter in any Internet search
engine. For example, florida and
beach. We will support the conjunc-
tive operators AND, OR and NOT to
retrieve records conforming to the
query, and we will only consider
single word operands. The data
requirements for this type of query
are simple: for each memo field we
wish to index, we need a list of key-
words and identifiers for the
records containing each keyword.
Figure 1 shows the definition of our
“index table.” The data table can be
considered the master table, and
the index table can be considered
the detail table.

First we will need to populate the
index table from the data table.
The fundamental process for this is
to take a string of text and produce
a list of all the words within that
text, then save this list to the index
table. Generally we would want to
omit all the minor words such as
the, and, a, this and so on, so we
would like to be able to exclude
certain words to keep down the
size of the index table.

Ideally, we would want the key-
words updated automatically each
time a record with a memo field
was added, or the memo was
updated. This begs for insert and
update triggers on the table, but to
use SQL to parse a memo and pro-
duce a list of unique keywords
would be extremely difficult. We
will rely on our Delphi application
to detect that a memo requires key-
word indexing and perform the
task for us. However, many data-
base servers allow us to link DLL
procedures or functions into SQL,
so we may be able to use the power

of Delphi to parse the memo and
still link it into a database trigger.

TMemoScanner
Listing 1 shows the TMemoScanner
class which parses a given memo
field and returns a list of all the
unique keywords found in the
memo. We can then write these
keywords to the index table.
TMemoScanner derives from Delphi’s
TBLOBStream class, which simplifies
streaming data out of a BLOB field
in a dataset.

Our memo scanner defines key-
words as any text delimited by
white space or punctuation marks.
However, we make allowances for
hyphenated words and words
forming the possessive with a trail-
ing ’s. We compare each keyword
against a predefined list of “discard
words” (the, and, this, etc), throw
out any matches we find, and
return the rest in a string list. The
scanner is bound to a memo field
when it is created, then the Scan
method is called to parse the
memo. Upon return, the keywords
can be retrieved with the Keywords
property.

So how does the scanner work?
Looking at the Scan method: we
read the memo as a stream one
character at a time. We can
improve performance considera-
bly by reading the stream in
“chunks” into a buffer and then
scanning the buffer one character
at a time. As long as we fail to find a
delimiting character, we accumu-
late the text as a keyword. Once we
do find a delimiting character, we

Table BiolifeIdx1
FieldName Datatype Size
================== ========= ====
Keyword Varchar 50
RecordID Integer
Primary Index: Keyword, RecordID
Secondary Index: RecordID

➤ Figure 1

January 1998 The Delphi Magazine 31

compare our keyword to the dis-
card list. If a match is not found we
add the keyword to our internal
list. Duplicate words are automati-
cally eliminated from the list. Note
that we are calculating word off-
sets for the position of the keyword
within the memo, but this is not
used currently. We’ll take advan-
tage of this information later on.

Using TMemoScanner to create the
index table should be fairly obvi-
ous. For each memo, we instantiate
a TMemoScanner, call Scan, delete any
existing keywords in the index
table and write the contents of
TMemoScanner.Keywords to the index
table.

Retrieving
Expression Matches
Now that we have keyword infor-
mation to draw upon, how do we
make use of this information in our

applications? For our purposes
here we’ll restrict ourselves to
expressions involving only one
term, or two terms joined by AND,
OR or NOT. Realistically we would
allow any number of terms joined
by any combination of operators,
but the parsing and expression
tree logic would quickly get
beyond the scope of this article.
For the moment we’ll further
restrict ourselves to single word
terms. Later in the article we’ll
handle terms of multiple words.

The easiest approach for us to
take is to examine the expression
entered by the user and dynami-
cally generate a custom SQL state-
ment on the fly to find the matches
in the keyword table and join with
the data table. Let’s take a look at
how the SQL needs to be con-
structed to support our different
operators.

In essence we need to produce a
list of all the unique record

numbers of memos containing key-
words that conform to the search
expression. Then retrieve the rele-
vant data from the data table for
those records. Let’s say we wanted
all records referring to California.
For a simple single word search
expression, it’s obvious that the
SQL shown in Listing 2 will tell us
which records have memos con-
taining that word, keeping in mind
that the list of keywords for a single
memo does not duplicate. This
becomes a subquery which we
then use to locate and retrieve
records from the BIOLIFE table, as
shown in Listing 3. All of our que-
ries will have this same “wrapper”
query around them, and from this
point on, we’ll only concern our-
selves with the inner query which
identifies the record numbers to
fetch.

Our expression engine simply
needs to alter the subquery in
accordance with the operator

➤ Listing 1

const
MaxBufferSize = 1024;

type
TMemoScanner = class(TBLOBStream)
private
Buffer: array[1..MaxBufferSize] of Char;
Punctuation: string;
WhiteSpace: string;
DiscardWords: TStringList;

protected
FKeywords: TStringList;
procedure DefineDiscardWords(aList: TStrings); virtual;
function DefinePunctuation: string; virtual;
function DefineWhitespace: string; virtual;
function GetKeyword(aIndex: Integer): string;
function GetKeywordCount: Integer;
procedure KeywordFound(aKeyword: string;
aWordOffset: Integer); virtual;

public
constructor Create(aField: TBLOBField);
destructor Destroy; override;
procedure Scan;
property KeywordCount: Integer read GetKeywordCount;
property Keywords[aIndex: Integer]: string
read GetKeyword;

end;
implementation
constructor TMemoScanner.Create(aField: TBLOBField);
begin
inherited Create(aField, bmRead);
FKeywords := TStringList.Create;
FKeywords.Sorted := True;
FKeywords.Duplicates := dupIgnore;
DiscardWords := TStringList.Create;
DiscardWords.Sorted := True;
DiscardWords.Duplicates := dupIgnore;
DefineDiscardWords(DiscardWords);
Punctuation := DefinePunctuation;
WhiteSpace := DefineWhiteSpace;

end;
destructor TMemoScanner.Destroy;
begin
DiscardWords.Free;
inherited Destroy;

end;
procedure TMemoScanner.DefineDiscardWords(aList: TStrings);
begin
{ There are various methods for implementing the lookup
list. A hash table might be faster. }

with aList do begin
Add(‘A’);
Add(‘ALL’);
Add(‘AN’);
Add(‘AND’);
{...list truncated for brevity...}

end;
end;
function TMemoScanner.DefinePunctuation: string;
begin
{ we specifically omit the hyphen and apostrophe }
Result := ‘~’!@#$%^&*()+={}[]|\:;"<>,.?/’;

end;
function TMemoScanner.DefineWhiteSpace: string;
begin
Result := #32#8#9#13#10;

end;
function TMemoScanner.GetKeyword(aIndex: Integer): string;
begin
Result := FKeywords[aIndex];

end;
function TMemoScanner.GetKeywordCount: Integer;
begin
Result := FKeywords.Count;

end;
procedure TMemoScanner.KeywordFound(aKeyword: string;
aWordOffset: Integer);

begin
FKeywords.Add(aKeyword);

end;
procedure TMemoScanner.Scan;
var
Ch: Char;
Keyword: string;
I: Integer;
BufLen: Integer;
WordOffset: Integer;

begin
FKeywords.Clear;
Keyword := ‘’;
Position := 0;
WordOffset := -1;
while Position < Size do begin
BufLen := Read(Buffer, SizeOf(Buffer));
for I := 1 to BufLen do begin
Ch := UpCase(Buffer[I]);
{ Is it a keyword delimiter? }
if Pos(Ch, WhiteSpace + Punctuation) <> 0 then begin
if Length(Keyword) <> 0 then begin
Inc(WordOffset); { count words in text }
if DiscardWords.IndexOf(Keyword) = -1 then
KeywordFound(Keyword, WordOffset);

Keyword := ‘’;
end;

end else
{accumulate current keyword}
Keyword := Keyword + Ch;

end;
end;

end;

32 The Delphi Magazine Issue 29

we’ve chosen. Listing 4 shows how
we would handle the OR operator.
We use the DISTINCT operator to
eliminate any duplicates produced
by the same memo having both
keywords.

For the AND operator we find all
the records containing one search
word, then for each of those we
check to see if the other search
word can be found in the same
memo. To do this we can use a cor-
related subquery. A correlated
subquery is two nested queries
where values from each row of the
outer query are passed into the
inner query which is then executed
using those values. The result of
the inner query may impact the
row in the outer query.

What we will do is make our
outer query produce a list of
memos containing the first search
word, then for each one we execute
an inner query to see if the other
search word is present in that
memo. Listing 5 shows how we do
this. The inner query obtains the
values from the outer query by ref-
erencing the outer query’s table. It
then plugs those values into itself
and runs itself. This is repeated for
each row found by the outer query.
If the inner query fails to find the
second search word, then it
returns an empty result set and the
boolean function EXISTS returns
False. Handling the NOT operator is
essentially the same and is also
shown in Listing 5.

Putting It Into Practice
Figure 2 shows a demo program
which puts all this together. This
demo can be found on the disk
accompanying this issue. You’ll
have to create the BIOLIFEIDX1
index table (see Figure 1) in
DBDEMOS, but you’ll find a utility on
the disk to populate the table.

To use the demo, enter the
search terms and click the Single
Word Search button. The BIOLIFE
records containing a Notes field
that matches the expression are
returned in the grid. If we double

click on an entry in the grid, the
Notes field for that record is dis-
played in the memo control below.
We simply write code to assemble
the SQL query as we have dis-
cussed and put it into a TQuery con-
trol. If View SQL is checked, then
clicking the Single Word Search
button shows the SQL generated
for the given search terms.

The SELECT statement returning
the records matching the expres-
sion only returns the name fields
and the primary key field. We could
have returned the memo itself
within this result set. However, a
more realistic approach in
client/server is to return the mini-
mum amount of information to

allow the user to select the record
they are really interested in, then
grab the full details of the record
only when they request it. If we
linked the memo to the result set
grid, there could be noticeable
delay and unnecessary load on the
network as the user scrolled
through records while the memo
fields were fetched from the server
for each record.

Words NEAR Other Words
The NEAR operator allows you to
look for text containing two words
that are physically close to each
other in the text, for example
within 8 words of each other. Obvi-
ously our index table format will

SELECT RecordID FROM BiolifeIdx1
WHERE Keyword = “California”

➤ Listing 2

SELECT Biolife."Species No", Common_Name, Biolife."Species Name"
FROM Biolife
WHERE Biolife."Species No" IN
(SELECT RecordID FROM BiolifeIdx1
WHERE Keyword = “California”)

➤ Listing 3

/* kwd OR kwd */
SELECT DISTINCT RecordID FROM BiolifeIdx1
WHERE Keyword = “California” OR Keyword = “Alaska”

➤ Listing 4

/* kwd AND kwd */
SELECT RecordID FROM BiolifeIdx1 A
WHERE Keyword = “California” AND EXISTS(
SELECT RecordID FROM BiolifeIdx1 B
WHERE A.RecordID = B.RecordID AND

B.Keyword = “Alaska”)
/* kwd NOT kwd */
SELECT RecordID FROM BiolifeIdx1 A
WHERE Keyword = “California” AND NOT EXISTS(
SELECT RecordID FROM BiolifeIdx1 B
WHERE A.RecordID = B.RecordID AND

B.Keyword = “Alaska”)

➤ Listing 5

➤ Figure 2

34 The Delphi Magazine Issue 29

have to change to include informa-
tion about the position of the
indexed keywords. Figure 3 shows
our new table layout.

Obviously, with this layout,
duplicate keywords per indexed
record will be introduced and the
table will be proportionately larger
because of this. All the SQL queries
we used to support the AND, OR and
NOT operators will still work on this
table as long as we make sure
to use DISTINCT in the select list
to eliminate duplicate record
numbers.

To create this index table, we
make a new descendant of
TMemoScanner which preserves the
positional information. Listing 6
shows our extended memo scan-
ner class. Basically all we do is
change the keyword list to allow
duplicates, override the Keyword-
Found method to retain the posi-
tional information being computed
and provide a property to retrieve
that information. Note that
although we discard words found
in the discard list the WordOffset
still shows the correct word posi-
tion within the original memo.

Now all we have to do is write an
SQL statement that is essentially
the same as our AND query, but also
takes into account the “nearness”
of the words. We simply make a
comparison of the word offsets of
the two search terms a condition of
the inner query. Listing 7 shows an
SQL statement to handle NEAR. The
constant 8 in the offset calculation
means the words have to be within
8 words of each other. Note that if
our SQL dialect had an absolute
value function, we should replace
the last two terms of the WHERE
clause with the single term:
ABS(A.WordOffset -
B.WordOffset) <= 8

Phrase Matching
The next technique we will con-
sider is matching an entire phrase
of text rather than just single key-
words. First we will look at the case
where we are asked to find all
memos containing a single multi-
word phrase, without the compli-
cations of the AND, OR, NOT and NEAR
operators. Then we will progress
to the more complicated topic of

using the conjunctive operators
with phrases.

When allowing phrase matches,
we should not discard “trivial”
words as we’ve defined in the
DefineDiscardWords method shown
in Listing 1. To create a scanner
that does not discard words, we
just create a descendant like we’ve
done in Listing 6, but we also make
an override of DefineDiscardWords
that does nothing.

A phrase match means we are
looking for a specific series of

words in a specific sequence.
Broken down into abstractions, we
have nothing more than a master-
detail relationship (memos to key-
words within the memos) and we
are searching for all master
records containing a specific com-
bination of detail records in a spe-
cific sequence. In principle, our
index table tells us everything we
need to know to find a match. Once
we find the first word of the phrase,
we must also find the second word
within the same memo and the

Table: BiolifeIdx2
FieldName Datatype Size
================== ========= ====
Keyword Varchar 50
RecordID Integer
WordOffset Integer
Primary Index: Keyword, RecordID, WordOffset
Secondary Index: RecordID

➤ Figure 3

type
TMemoScannerExt = class(TMemoScanner)
protected
function GetWordOffset(aIndex: Integer): Integer;
procedure KeywordFound(aKeyword: string;
aWordOffset: Integer); override;

public
constructor Create(aField: TBLOBField);
property WordOffset[aIndex: Integer]: Integer read GetWordOffset;

end;
constructor TMemoScannerExt.Create(aField: TBLOBField);
begin
inherited Create(aField);
FKeywords.Duplicates := dupAccept;

end;
function TMemoScannerExt.GetWordOffset(aIndex: Integer): Integer;
begin
Result := Integer(FKeywords.Objects[aIndex]);

end;
procedure TMemoScannerExt.KeywordFound(aKeyword: string; aWordOffset: Integer);
begin
FKeywords.AddObject(aKeyword, Pointer(aWordOffset));

end;

➤ Listing 6

/* kwd NEAR kwd */
SELECT DISTINCT RecordID FROM BiolifeIdx2 A
WHERE Keyword = “California” AND EXISTS(
SELECT RecordID FROM BiolifeIdx2 B
WHERE A.RecordID = B.RecordID AND

B.Keyword = “Alaska” AND
B.WordOffset - A.WordOffset <= 8 AND
B.WordOffset - A.WordOffset >= -8)

➤ Listing 7

SELECT RecordID FROM BiolifeIdx2 A
WHERE Keyword = “edibility” AND EXISTS
(SELECT RecordID FROM BiolifeIdx2 B

WHERE A.RecordID = B.RecordID AND
((B.Keyword = “is” AND
B.WordOffset = A.WordOffset + 1) OR
(B.Keyword = “excellent” AND
B.WordOffset = A.WordOffset + 2))

GROUP BY RecordID
HAVING COUNT(*) = 2)

➤ Listing 8

January 1998 The Delphi Magazine 35

second word’s offset must be 1
greater than that of the first word.
Then we must find the third word
in the same memo, with an offset 2
greater than that of the first word,
and so on through all the words in
the phrase.

Seems like a fairly daunting task
for SQL doesn’t it?

In the BIOLIFE table, the Notes
field frequently makes mention of
each species’ edibility, such as
“edibility is good” or “edibility is
poor.” Suppose we were searching
for the phrase “edibility is excel-
lent”; we would find two matches in
the BIOLIFE table for French Grunt
(Species No 90220) and Yellow
Jack (Species No 90260).

To find these matches we’re
obviously going to have to break
our phrase into its constituent
words. We need to isolate the first
word since the offsets of all other
words are compared relative to the
first word’s offset (the offset of the
Nth word must equal the first
word’s offset + N - 1).

Let’s refer to the first phrase
word as the anchor word. If we had
a set of all the keyword records
matching the anchor word, we
could take this list and check for
the existence of the remaining
phrase words in the same memo
with the correct offsets from the
anchor word.

Kind of sounds like a correlated
subquery doesn’t it? Basically we
have a very specialized AND expres-
sion: find all the memos containing
the anchor word as well as all the
following keywords in sequence.

Starting with the SQL statement we
wrote for the AND operator (Listing
5), we extend the inner query to
look for matches on all the remain-
ing phrase words with the added
condition that their offsets must
align properly with the anchor
word. Listing 8 shows the SQL
statement we’ll used to find the
phrase “edibility is excellent.”

The inner WHERE clause alone is
not sufficient to find phrase
matches accurately. Note carefully
the OR operator between the filters
for the keyword “is” and the key-
word “excellent”. Each keyword is
in a separate detail record, so we
must find the records that are one
keyword or the other. This logic
will also pick up partial phrase
matches such as “edibility is
rotten” and “edibility ain’t good.”
In each case at least one of the
inner keywords is matched by
name and position, but we have
not guaranteed that all the phrase
words are present and in the right
position.

We solve this with the HAVING
clause (and by necessity the GROUP
BY clause). We find that a complete
phrase match results in the inner
query finding exactly N - 1 rows
where N is the number of words in
the search phrase.

We can count the number of
rows returned by the inner query
by grouping them with GROUP BY
and HAVING. HAVING throws out all
groups of records not meeting the
given condition. Since all the
matching keyword records will
have the same RecordID by

definition of the join operation, we
will always have exactly one group
in the inner query result set. There-
fore, the HAVING clause forces the
inner query result set to be empty
if we don’t have the right number of
rows. This eliminates false positive
hits when there is only a partial
match of the phrase.

What if more than one partial
phrase match existed in the memo
that coincidentally resulted in the
correct number of rows being
returned? What if “edibility is
rotten” and “edibility ain’t good”
both appeared in the same memo:
wouldn’t this make the inner query
return two rows and produce a
false positive? No, it wouldn’t,
because each phrase will have an
anchor word with a different word
offset value. This means they will
be separate rows in the outer
query, each processed individu-
ally by the inner query. Therefore,
it is impossible for the inner query
to find more than one partial
phrase match.

The Mother Of
All Keyword Searches
OK, so far we have located memos
based on the presence of a single
multiword phrase. And we’ve
located memos based on algebraic
operators between single word
operands. The next logical exten-
sion is to allow operators between
phrases.

This becomes a bit tougher to
tackle within the limitations of
Local SQL in Delphi and we must
turn to temporary tables on the
server. In essence, when a phrase
is present in the expression, we run
a query to find the phrase matches,
run a query to find the other term
of the expression, and then
combine the two result sets in a
fashion consistent with the opera-
tor between the terms. Note that
“the other term” could also be a
phrase.

For example, the expression
shown in Listing 9 is a phrase ANDed
with a single word. We take our
phrase-finding query from Listing 8
and put its result set in a tempo-
rary table. Then we take our
single-word-finding query from
Listing 2 and put its result set in the

Expression: “edibility is excellent” AND grunt-like

/* find records containing “edibility is excellent” */
SELECT RecordID INTO #Temp FROM BiolifeIdx2 A
WHERE Keyword = “EDIBILITY” AND EXISTS
(SELECT RecordID FROM BiolifeIdx2 B

WHERE A.RecordID = B.RecordID AND
((B.Keyword = “IS” AND
B.WordOffset = A.WordOffset + 1) OR
(B.Keyword = “EXCELLENT” AND
B.WordOffset = A.WordOffset + 2))

GROUP BY RecordID
HAVING COUNT(*) = 2)

/* find records containing “grunt-like” */
INSERT INTO #Temp
SELECT RecordID FROM BiolifeIdx2 WHERE Keyword = “GRUNT-LIKE”

/* find duplicates */
SELECT RecordID FROM #Temp
GROUP BY RecordID
HAVING COUNT(*) > 1

DROP TABLE #Temp

➤ Listing 9

36 The Delphi Magazine Issue 29

same temporary table. Then all we
have to do is find the records that
duplicate in the temporary table.
Again, we can use GROUP BY and
HAVING in order to isolate duplicate
records.

Listing 9 shows a Microsoft SQL
Server query to do just this,
copying data into the temporary
table #TEMP. The SELECT INTO
construct creates a temporary
table with a structure matching the
columns returned from the SELECT
statement and copies its result set
into the temporary table.

Expression: “edibility is excellent” NOT grunt-like

/* find records containing “edibility is excellent” */
SELECT RecordID INTO #Temp FROM BiolifeIdx2 A
WHERE Keyword = “EDIBILITY” AND EXISTS
(SELECT RecordID FROM BiolifeIdx2 B

WHERE A.RecordID = B.RecordID AND
((B.Keyword = “IS” AND
B.WordOffset = A.WordOffset + 1) OR
(B.Keyword = “EXCELLENT” AND
B.WordOffset = A.WordOffset + 2))

GROUP BY RecordID
HAVING COUNT(*) = 2)

/* delete records containing “grunt-like” */
DELETE FROM #Temp WHERE RecordID IN
(SELECT RecordID FROM BiolifeIdx2 WHERE Keyword = “GRUNT-LIKE”)

SELECT RecordID FROM #Temp
DROP TABLE #Temp

➤ Listing 10

The other operators are handled
similarly. For OR, you would simply
return all the distinct values in the
temporary table. The NOT operator
is a little trickier. We select all the
records for the first term, but then
we remove all those records
matching the second term. What’s
left is our answer. We use the same
approach as Listing 9, but instead
of adding the second term’s
records to the temporary table, we
remove any matches to those
records from the temporary table.
Listing 10 shows the NOT query.

Conclusion
We’ve seen a relatively simple way
to query freeform text within a
database. But more importantly,
we’ve seen how a task, which at
first glance seems impossible for
SQL, actually can be handled quite
nicely with a little study and SQL
know-how. But that’s what we’re
here for right?

I'd like to thank Dave Jewell for
his help in initially brainstorming
the indexing approach. Since Dave
dislikes database programming
[that’s the understatement of the
year! Editor], I had to trick him into
talking about indexing text “like
Windows Help does.” No hard
feelings Dave?

Next month we’ll begin looking
at multi-tiered database applica-
tions. What are they all about, and
how can Delphi help us build
them?

Steve Troxell is a software
engineer with Ultimate Software
Group in the USA. He can be
contacted via email at
Steve_Troxell@USGroup.com

	Basic Keyword Indexing
	TMemoScanner
	Retrieving Expression Matches
	Putting It Into Practice
	Words NEAR Other Words
	Phrase Matching
	The Mother Of All Keyword Searches
	Conclusion

